Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(1): e17102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273557

ABSTRACT

Soil protists, the major predator of bacteria and fungi, shape the taxonomic and functional structure of soil microbiome via trophic regulation. However, how trophic interactions between protists and their prey influence microbially mediated soil organic carbon turnover remains largely unknown. Here, we investigated the protistan communities and microbial trophic interactions across different aggregates-size fractions in agricultural soil with long-term fertilization regimes. Our results showed that aggregate sizes significantly influenced the protistan community and microbial hierarchical interactions. Bacterivores were the predominant protistan functional group and were more abundant in macroaggregates and silt + clay than in microaggregates, while omnivores showed an opposite distribution pattern. Furthermore, partial least square path modeling revealed positive impacts of omnivores on the C-decomposition genes and soil organic matter (SOM) contents, while bacterivores displayed negative impacts. Microbial trophic interactions were intensive in macroaggregates and silt + clay but were restricted in microaggregates, as indicated by the intensity of protistan-bacterial associations and network complexity and connectivity. Cercozoan taxa were consistently identified as the keystone species in SOM degradation-related ecological clusters in macroaggregates and silt + clay, indicating the critical roles of protists in SOM degradation by regulating bacterial and fungal taxa. Chemical fertilization had a positive effect on soil C sequestration through suppressing SOM degradation-related ecological clusters in macroaggregate and silt + clay. Conversely, the associations between the trophic interactions and SOM contents were decoupled in microaggregates, suggesting limited microbial contributions to SOM turnovers. Our study demonstrates the importance of protists-driven trophic interactions on soil C cycling in agricultural ecosystems.


Subject(s)
Microbiota , Soil , Soil/chemistry , Clay , Carbon/chemistry , Agriculture , Soil Microbiology
2.
J Hazard Mater ; 465: 133122, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056276

ABSTRACT

Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.


Subject(s)
Mercury , Soil Pollutants , Mercury/analysis , Carbon , Ecosystem , Bacteria/genetics , Soil/chemistry , Glucose , Soil Pollutants/analysis
3.
Trends Microbiol ; 32(5): 465-476, 2024 May.
Article in English | MEDLINE | ID: mdl-38103995

ABSTRACT

Metals and metalloids are used as weapons for predatory feeding by unicellular eukaryotes on prokaryotes. This review emphasizes the role of metal(loid) bioavailability over the course of Earth's history, coupled with eukaryogenesis and the evolution of the mitochondrion to trace the emergence and use of the metal(loid) prey-killing phagosome as a feeding strategy. Members of the genera Acanthamoeba and Dictyostelium use metals such as zinc (Zn) and copper (Cu), and possibly metalloids, to kill their bacterial prey after phagocytosis. We provide a potential timeline on when these capacities first evolved and how they correlate with perceived changes in metal(loid) bioavailability through Earth's history. The origin of phagotrophic eukaryotes must have postdated the Great Oxidation Event (GOE) in agreement with redox-dependent modification of metal(loid) bioavailability for phagotrophic poisoning. However, this predatory mechanism is predicted to have evolved much later - closer to the origin of the multicellular metazoans and the evolutionary development of the immune systems.


Subject(s)
Dictyostelium , Metals , Phagocytosis , Metals/metabolism , Dictyostelium/metabolism , Dictyostelium/physiology , Biological Evolution , Acanthamoeba , Animals , Phagosomes/metabolism , Zinc/metabolism , Metalloids/metabolism , Copper/metabolism , Biological Availability , Mitochondria/metabolism
4.
Fa Yi Xue Za Zhi ; 39(5): 433-440, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-38006261

ABSTRACT

OBJECTIVES: The common differentially expressed mRNAs in brain, heart and liver tissues of deceased sudden infant death syndrome (SIDS) and infectious sudden death in infancy (ISDI) confirmed by autopsy was screened by bioinformatics to explore the common molecular markers and pathogenesis of SIDS and ISDI. METHODS: The datasets of GSE70422 and GSE136992 were downloaded, the limma of R software was used to screen differentially expressed mRNA in different tissue samples of SIDS and ISDI decedents for overlapping analysis. The clusterProfiler of R software was used to conduct gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The protein-protein interaction (PPI) network was constructed by STRING database, while the hub gene was screened by cytoHubba plug-in. RESULTS: Compared with the control group, there were 19 significant differentially expressed genes in the tissue samples of SIDS and ISDI decedents, among which 16 in the heart tissue and 3 in the liver tissue, and the astrotactin 1 (ASTN1) gene expression difference in the heart tissue was most significant. The PPI network identified Ras homolog family member A (RHOA), integrin subunit alpha 1 (ITGA1), and H2B clustered histone 5 (H2BC5) were hub genes. The analysis of GO and KEGG showed that differentially expressed genes were enriched in the molecular pathways of actin cytoskeleton regulation, focal adhesion and response to mycophenolic acid. CONCLUSIONS: ASTN1, RHOA and ITGA1 may participate in the development of SIDS and ISDI. The enrichment of differentially expressed genes in immune and inflammatory pathways suggests a common molecular regulatory mechanism between SIDS and ISDI. These findings are expected to provide new biomarkers for molecular anatomy and forensic identification of SIDS and ISDI.


Subject(s)
Gene Expression Profiling , Sudden Infant Death , Humans , Infant , Sudden Infant Death/genetics , Gene Regulatory Networks , Protein Interaction Maps/genetics , Computational Biology
5.
Cell Mol Neurobiol ; 43(8): 4117-4140, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37624470

ABSTRACT

Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Ferroptosis , Hydrogen Sulfide , Neuroprotective Agents , Humans , Hydrogen Sulfide/pharmacology , Wnt Signaling Pathway , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain Injuries, Traumatic/drug therapy , Cognitive Dysfunction/drug therapy , Cognition
6.
J Hazard Mater ; 457: 131699, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37270960

ABSTRACT

Microplastics (MPs) as emerging contaminants have accumulated extensively in agricultural ecosystems and are known to exert important effects on biogeochemical processes. However, how MPs in paddy soils influence the conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains poorly understood. Here, we evaluated the effects of MPs on Hg methylation and associated microbial communities in microcosms using two typical paddy soils in China (i.e., yellow and red soils). Results showed that the addition of MPs significantly increased MeHg production in both soils, which could be related to higher Hg methylation potential in the plastisphere than in the bulk soil. We found significant divergences in the community composition of Hg methylators between the plastisphere and the bulk soil. In addition, the plastisphere had higher proportions of Geobacterales in the yellow soil and Methanomicrobia in the red soil compared with the bulk soil, respectively; and plastisphere also had more densely connected microbial groups between non-Hg methylators and Hg methylators. These microbiota in the plastisphere are different from those in the bulk soil, which could partially account for their distinct MeHg production ability. Our findings suggest plastisphere as a unique biotope for MeHg production and provide new insights into the environment risks of MP accumulation in agricultural soils.


Subject(s)
Mercury , Methylmercury Compounds , Microbiota , Oryza , Soil Pollutants , Methylmercury Compounds/chemistry , Soil/chemistry , Plastics , Soil Pollutants/analysis , Mercury/analysis , Oryza/chemistry
7.
Mol Neurobiol ; 60(9): 4872-4896, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37193866

ABSTRACT

Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.


Subject(s)
Brain Injuries, Traumatic , Cognition Disorders , Cognitive Dysfunction , Ferroptosis , Humans , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/complications , Cognition Disorders/etiology , Cytokines
8.
Sci Total Environ ; 889: 164183, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37201857

ABSTRACT

High dietary intake of Cu has previously been linked to the selection of Cu resistance and co-selection of antibiotic resistance in specific gut bacteria. Based on a novel HT-qPCR metal resistance gene chip as combined with 16S rRNA gene amplicon sequencing and phenotypic resistance typing of Escherichia coli isolates, we here report the impacts of two contrasting Cu-based feed additives on the swine gut bacterial metal resistome and community assembly. DNA was extracted from fecal samples (n = 80) collected at day 26 and 116 of the experiment from 200 pigs allotted to five dietary treatments: negative control (NC) diet with 20 µg CuSO4 g-1 and four diets added 125 or 250 µg CuSO4 g-1 feed or 125 or 250 µg Cu2O g-1 feed to the NC diet. Dietary Cu supplementation reduced the relative abundance of Lactobacillus, but it had negligible impacts on bacterial community composition relative to the gut microbiome maturation effect (time). The relative importance of different bacterial community assembly processes was not markedly affected by the dietary Cu treatments, and differences in swine gut metal resistome composition could be explained primarily by differences in bacterial community composition rather than by dietary Cu treatments. High dietary Cu intake (250 µg Cu g-1) selected for phenotypic Cu resistance in E. coli isolates, but surprisingly it did not result in increased prevalence of the Cu resistance genes targeted by the HT-qPCR chip. In conclusion, the lacking impacts of dietary Cu on the gut bacterial metal resistome explain results from a previous study showing that even high therapeutic doses of dietary Cu did not cause co-selection of antibiotic resistance genes and mobile genetic elements known to harbor these genes.


Subject(s)
Copper , Gastrointestinal Microbiome , Animals , Swine , Copper/pharmacology , RNA, Ribosomal, 16S , Escherichia coli/genetics , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria/genetics
9.
Environ Sci Technol ; 57(12): 4905-4914, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917516

ABSTRACT

Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium , Bacteria , Soil , Rhizosphere
10.
Environ Int ; 172: 107789, 2023 02.
Article in English | MEDLINE | ID: mdl-36736026

ABSTRACT

Rice-crayfish co-culture (RC) has been widely and rapidly promoted as a sustainable agricultural system in many countries. The accumulation of crayfish residues could enhance soil organic matters; however, impacts of this integrated farming model on the dissemination and pathogenicity of resistance and virulence genes remain poorly understood. Here, we characterized antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), metal resistance genes (MRGs) and virulence factor genes (VFGs) using metagenomic methods in paired RC and rice monoculture (RM) systems across China. The RC model did not increase the abundance of soil ARGs, BRGs, MRGs, or VFGs in comparison to the RM model, but selectively enriched 35 subtypes of these potential resistance and virulence genes. Network analysis revealed that resistance and virulence genes had a higher number of connections with mobile genetic elements (MGEs) in the RC system than that in the RM system, suggesting a higher horizontal transfer potential of these genes. Moreover, the RC model had a higher abundance of human opportunistic pathogens such as Salmonella enterica, Vibrio cholerae, and Shigella dysenteriae which were potential hosts of VFGs such as phoP, fleS, and gspE, suggesting a potential threat to human health. We further unraveled that stochastic process was the main driver of the assembly of resistance and virulence genes in the RC system. The abundance of ARGs and VFGs were primarily associated with microbial community compositions, while the abundance of BRGs and MRGs were mainly associated with that of MGEs. Taken together, our results suggest that the RC model has potential to cause the dissemination and pathogenicity of resistance and virulence genes, which has important implications for the control of soil-borne biological risks and the strategic management of sustainable agriculture.


Subject(s)
Oryza , Soil , Animals , Humans , Virulence/genetics , Astacoidea , Coculture Techniques , Genes, Bacterial , China , Metals , Anti-Bacterial Agents
11.
Environ Sci Technol ; 57(9): 3590-3601, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36811608

ABSTRACT

Protist predation is a crucial biotic driver modulating bacterial populations and functional traits. Previous studies using pure cultures have demonstrated that bacteria with copper (Cu) resistance exhibited fitness advantages over Cu-sensitive bacteria under the pressure of protist predation. However, the impact of diverse natural communities of protist grazers on bacterial Cu resistance in natural environments remains unknown. Here, we characterized the communities of phagotrophic protists in long-term Cu-contaminated soils and deciphered their potential ecological impacts on bacterial Cu resistance. Long-term field Cu pollution increased the relative abundances of most of the phagotrophic lineages in Cercozoa and Amoebozoa but reduced the relative abundance of Ciliophora. After accounting for soil properties and Cu pollution, phagotrophs were consistently identified as the most important predictor of the Cu-resistant (CuR) bacterial community. Phagotrophs positively contributed to the abundance of a Cu resistance gene (copA) through influencing the cumulative relative abundance of Cu-resistant and -sensitive ecological clusters. Microcosm experiments further confirmed the promotion effect of protist predation on bacterial Cu resistance. Our results indicate that the selection by protist predation can have a strong impact on the CuR bacterial community, which broadens our understanding of the ecological function of soil phagotrophic protists.


Subject(s)
Copper , Soil , Copper/pharmacology , Bacteria/genetics , Soil Microbiology
12.
Environ Sci Technol ; 57(1): 790-800, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36516830

ABSTRACT

Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.


Subject(s)
Humic Substances , Kaolin , Bentonite , Anti-Bacterial Agents , Minerals , Soil , Drug Resistance, Microbial/genetics , Adsorption
13.
Glob Chang Biol ; 29(1): 231-242, 2023 01.
Article in English | MEDLINE | ID: mdl-36226978

ABSTRACT

Microbial communities play critical roles in fixing carbon from the atmosphere and fixing it in the soils. However, the large-scale variations and drivers of these microbial communities remain poorly understood. Here, we conducted a large-scale survey across China and found that soil autotrophic organisms are critical for explaining CO2 fluxes from the atmosphere to soils. In particular, we showed that large-scale variations in CO2 fixation rates are highly correlated to those in autotrophic bacteria and phototrophic protists. Paddy soils, supporting a larger proportion of obligate bacterial and protist autotrophs, display four-fold of CO2 fixation rates over upland and forest soils. Precipitation and pH, together with key ecological clusters of autotrophic microbes, also played important roles in controlling CO2 fixation. Our work provides a novel quantification on the contribution of terrestrial autotrophic microbes to soil CO2 fixation processes at a large scale, with implications for global carbon regulation under climate change.


Subject(s)
Carbon Dioxide , Soil , Soil/chemistry , Soil Microbiology , Autotrophic Processes/physiology , Carbon , Bacteria
14.
Environ Res ; 216(Pt 4): 114708, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36372146

ABSTRACT

The rice-crayfish co-culture (RC) is a putative sustainable agricultural system. However, studies on the ecological effects of long-term RC systems were still lacking. Here, we compare enzymatic stoichiometry, microbial necromass, and microbial community between the RC and rice monoculture systems (RM). Soil enzymatic stoichiometry analysis showed that after transformation from RM to RC for about three years, ammonium nitrogen (NH4+-N) availability increased to depress relative N-acquiring enzyme production, especially for leucine aminopeptidase. The contents of microbial necromass increased approximately onefold in the RC system, making microbial necromass' contribution to the soil nitrogen (N) reach up to 46.72%. Elevation in NH4+ decreased N-acquiring enzyme, and a relatively more effective C acquisition likely benefited microbial necromass retention and production in the RC system. This study highlights that the rice-crayfish co-culture could modify the N pool of the surface paddy soil.


Subject(s)
Oryza , Soil , Animals , Nitrogen/analysis , Astacoidea , Soil Microbiology , Coculture Techniques
15.
Environ Sci Technol ; 56(15): 10656-10667, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35876052

ABSTRACT

Bacterial metal detoxification mechanisms have been well studied for centuries in pure culture systems. However, profiling metal resistance determinants at the community level is still a challenge due to the lack of comprehensive and reliable quantification tools. Here, a novel high-throughput quantitative polymerase chain reaction (HT-qPCR) chip, termed the metal resistance gene (MRG) chip, has been developed for the quantification of genes involved in the homeostasis of 9 metals. The MRG chip contains 77 newly designed degenerate primer sets and 9 published primer sets covering 56 metal resistance genes. Computational evaluation of the taxonomic coverage indicated that the MRG chip had a broad coverage matching 2 kingdoms, 29 phyla, 64 classes, 130 orders, 226 families, and 382 genera. Temperature gradient PCR and HT-qPCR verified that 57 °C was the optimal annealing temperature, with amplification efficiencies of over 94% primer sets achieving 80-110%, with R2 > 0.993. Both computational evaluation and the melting curve analysis of HT-qPCR validated a high specificity. The MRG chip has been successfully applied to characterize the distribution of diverse metal resistance determinants in natural and human-related environments, confirming its wide scope of application. Collectively, the MRG chip is a powerful and efficient high-throughput quantification tool for exploring the microbial metal resistome.


Subject(s)
Bacteria , Metals, Heavy , Bacteria/genetics , Humans , Real-Time Polymerase Chain Reaction
16.
Sci Total Environ ; 838(Pt 3): 156393, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660450

ABSTRACT

Heavy metal remediation treatments might influence functional microbial community assembly. Dissimilatory nitrate reduction to ammonia (DNRA) contributes to the nitrogen retention processes in soil ecosystems. We assumed that remediation might reduce heavy metal toxicity and increase some available nutrients for the DNRA microbes, thus balancing the deterministic and stochastic process for DNRA community assembly. Here, we investigated the process of DNRA bacterial community assembly under different heavy metal remediation treatments (including control, biochar, limestone, rice straw, rice straw + limestone, and biochar + limestone) in an Alfisol soil. The abundance of DNRA bacteria diverged across treatments. The α-diversity of the DNRA bacterial community was correlated with pH, available phosphorus (AP), ammonium (NH4+), and extractable Fe (EFe). Metal Cd and Fe significantly affected the abundance of the nrfA gene. The ß-diversity was associated with pH, NH4+, and EFe. Deterministic processes dominantly drove the assembly processes of the DNRA bacterial community. NH4+ level played an essential role in the assembly processes than the other soil physicochemical properties and metal availability. High, moderate, and low levels of NH4+ could advocate stochastic process plus selection, heterogeneous selection to stochastic process, and heterogeneous selection, respectively. Network analysis highlighted a predominant role of NH4+ in regulating DNRA bacterial community assembly. However, the relative abundance of modules and some keystone species also were influenced by pH and EFe, respectively. Therefore, the DNRA bacterial community assembly under different heavy metal remediation treatments in this study was dominantly driven by nitrogen availability. pH, phosphorus, and metal availability were auxiliary regulators on DNRA bacterial community.


Subject(s)
Ammonium Compounds , Metals, Heavy , Microbiota , Ammonia/analysis , Bacteria , Calcium Carbonate , Denitrification , Metals, Heavy/analysis , Nitrates/analysis , Nitrogen/analysis , Nitrogen Oxides/analysis , Phosphorus , Soil
17.
FEMS Microbiol Ecol ; 98(3)2022 03 24.
Article in English | MEDLINE | ID: mdl-35285907

ABSTRACT

During germination, the seed releases nutrient-rich exudates into the spermosphere, thereby fostering competition between resident microorganisms. However, insight into the composition and temporal dynamics of seed-associated bacterial communities under field conditions is currently lacking. This field study determined the temporal changes from 11 to 31 days after sowing in the composition of seed-associated bacterial communities of winter wheat as affected by long-term soil fertilization history, and by introduction of the plant growth-promoting microbial inoculants Penicillium bilaiae and Bacillus simplex. The temporal dynamics were the most important factor affecting the composition of the seed-associated communities. An increase in the relative abundance of genes involved in organic nitrogen metabolism (ureC and gdhA), and in ammonium oxidation (amoA), suggested increased mineralization of plant-derived nitrogen compounds over time. Dynamics of the phosphorus cycling genes ppt, ppx and cphy indicated inorganic phosphorus and polyphosphate cycling, as well as phytate hydrolysis by the seed-associated bacteria early after germination. Later, an increase in genes for utilization of organic phosphorus sources (phoD, phoX and phnK) indicated phosphorus limitation. The results indicate that community temporal dynamics are partly driven by changed availability of major nutrients, and reveal no functional consequences of the added inoculants during seed germination.


Subject(s)
Bacillus , Microbiota , Penicillium , Bacillus/genetics , Bacillus/metabolism , Fertilizers/analysis , Penicillium/metabolism , Phosphorus/metabolism , Seeds , Soil , Soil Microbiology , Triticum/microbiology
18.
J Tissue Eng Regen Med ; 16(6): 530-537, 2022 06.
Article in English | MEDLINE | ID: mdl-35305076

ABSTRACT

Organoid culture is a popular model to study gene function as the easy manipulating and time saving compared with in vivo experiments. This is widely used in auditory system for studying supporting cells (SCs) or hair cells (HCs) as only very few SCs or HCs can be harvested in both human and murine cochlea. However, the use of organoids is still a challenge due to the low efficiency in genetic modification. Here we took Lin28b as an example and compared Lin28b gain-of-function (GOF) and loss-of-function (LOF) with different genetic engineering methods and found that TetOn induced GOF or LOF was more efficient compared with lipofection or lentiviral transduction in the experimental conditions we used. Cell apoptosis in TetOn induction system was lowest compared with the other methods in this study. Our study is the first to compare the efficiency of different genetic engineering techniques in cochlear organoid culture, which may also apply to organoids established with other tissues.


Subject(s)
Cochlea , Organoids , Animals , Genetic Engineering , Hair Cells, Auditory , Humans , Mice
19.
ISME Commun ; 2(1): 69, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-37938257

ABSTRACT

Soil pollution is an important stressor affecting biodiversity and ecosystem functioning. However, we lack a holistic understanding of how soil microbial communities respond to heavy metal pollution in agricultural ecosystems. Here, we explored the distribution patterns and inter-kingdom interactions of entire soil microbiome (including bacteria, fungi, and protists) in 47 paired paddy and upland fields along a gradient of legacy mercury (Hg) pollution. We found that the richness and composition of protistan community had stronger responses to Hg pollution than those of bacterial and fungal communities in both paddy and upland soils. Mercury polluted soils harbored less protistan phototrophs but more protistan consumers. We further revealed that long-term Hg pollution greatly increased network complexity of protistan community than that of bacterial and fungal communities, as well as intensified the interactions between protists and the other microorganisms. Moreover, our results consistently indicated that protistan communities had stronger responses to long-term Hg pollution than bacterial and fungal communities in agricultural soils based on structural equation models and random forest analyses. Our study highlights that soil protists can be used as bioindicators of Hg pollution, with important implications for the assessment of contaminated farmlands and the sustainable management of agricultural ecosystems.

20.
Environ Sci Technol ; 55(20): 13913-13922, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34613706

ABSTRACT

Agricultural soils are important reservoirs for antibiotic resistance genes (ARGs), which have close linkage to human health via crop production. Metal stress in environments may function as a selection pressure for antibiotic resistomes. However, there is still a lack of field studies focusing on the effect of historical mercury (Hg) contamination on antibiotic resistomes in agricultural soils. Here, we explored the ARG profile in soils with different cropping systems (paddy and upland) and linked them to legacy Hg exposure. We found that ARG profiles were significantly different between paddy and upland soils. However, both paddy and upland soils with long-term field Hg contamination harbored higher diversity and abundance of ARGs than non-polluted soils. The co-occurrence network reveals significant associations among Hg, Hg resistance genes, mobile genetic elements (MGEs), and ARGs. Together with path analysis showing legacy Hg possibly affecting soil resistomes through the shifts of soil microbiota, Hg resistance genes, and MGEs, we suggest that legacy Hg-induced potential co-selection might elevate the ARG level. Redundancy analysis further supports that legacy Hg pollution had a significant association with ARG variations in the paddy and upland soils (P < 0.01). Collectively, our results highlight the underappreciated role of legacy Hg as a potential persistent selecting agent in contributing to soil ARGs in agroecosystems.


Subject(s)
Mercury , Soil , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...